Monday, 25 September 2017

Moving Average Funktion In Sql


Gleitender Durchschnitt in T-SQL Eine gemeinsame Berechnung in der Trendanalyse ist der bewegte (oder rollende) Durchschnitt. Ein gleitender Durchschnitt ist der Durchschnitt der zum Beispiel letzten 10 Zeilen. Der gleitende Durchschnitt zeigt eine glattere Kurve als die tatsächlichen Werte, mehr mit einer längeren Periode für den gleitenden Durchschnitt, was es zu einem guten Werkzeug für die Trendanalyse macht. Dieser Blogpost zeigt, wie man den gleitenden Durchschnitt in T-SQL berechnet. Je nach Version von SQL Server werden verschiedene Methoden verwendet. Die nachstehende Tabelle zeigt den Glättungseffekt (rote Linie) mit einem 200-tägigen gleitenden Durchschnitt. Die Aktienkurse sind die blaue Linie. Der langfristige Trend ist deutlich sichtbar. T-SQL Moving Avergage 200 Tage Die folgende Demonstration erfordert die TAdb-Datenbank, die mit dem hier befindlichen Skript erstellt werden kann. Im kommenden Beispiel werden wir für die letzten 20 Tage einen gleitenden Durchschnitt berechnen. Abhängig von der Version von SQL Server gibt es eine andere Methode, um die Berechnung zu tun. Und wie wir später sehen werden, haben die neueren Versionen von SQL Server Funktionen, die eine viel effektivere Berechnung ermöglichen. SQL Server 2012 und höher Moving Average Diese Version nutzt eine aggregierte Fensterfunktion. Was ist neu in SQL 2012 ist die Möglichkeit, die Größe des Fensters zu beschränken, indem Sie angeben, wie viele Zeilen vor dem Fenster enthalten sollten: Zeilen vor 19, da wir die aktuelle Zeile auch in die Berechnung aufnehmen werden. Wie Sie sehen können, ist die Berechnung des gleitenden Durchschnitts in SQL Server 2012 ziemlich einfach. Die folgende Abbildung zeigt das Fensterprinzip. Die aktuelle Zeile ist mit gelb markiert. Das Fenster ist mit einem blauen Hintergrund markiert. Der gleitende Durchschnitt ist einfach der Durchschnitt von QuoteClose in den blauen Linien: T-SQL Moving Average Fenster. Die Ergebnisse der Berechnungen in älteren Versionen von SQL Server sind gleich, so dass sie nicht wieder angezeigt werden. SQL Server 2005 8211 2008R2 Moving Average Diese Version verwendet einen gemeinsamen Tabellenausdruck. Der CTE ist selbst referenziert, um die letzten 20 Zeilen für jede Zeile zu erhalten: Moving Average vor SQL Server 2005 Die Pre 2005 Version wird eine linke äußere Verknüpfung zu der gleichen Tabelle verwenden, um die letzten 20 Zeilen zu erhalten. Der äußere Tisch kann gesagt werden, das Fenster zu enthalten, dass wir einen Durchschnitt berechnen wollen: Leistungsvergleich Wenn wir die drei verschiedenen Methoden gleichzeitig laufen und den daraus resultierenden Ausführungsplan überprüfen, gibt es einen dramatischen Unterschied in der Leistung zwischen den Methoden: Vergleich von drei Verschiedene Methoden, um gleitenden Durchschnitt zu berechnen Wie Sie sehen können, macht die Fensterfunktion Verbesserungen in SQL 2012 einen großen Unterschied in der Leistung. Wie am Anfang dieses Beitrags erwähnt, werden gleitende Mittelwerte als Werkzeug zur Veranschaulichung von Trends verwendet. Ein gemeinsamer Ansatz ist es, bewegte Durchschnitte unterschiedlicher Längen zu kombinieren, um Veränderungen in den kurz-, mittel - und langfristigen Trends zu erkennen. Von besonderem Interesse sind die Überquerung der Trendlinien. Zum Beispiel, wenn sich der kurze Trend über den langen oder mittleren Trend bewegt, kann dies als Kaufsignal in der technischen Analyse interpretiert werden. Und wenn sich der kurze Trend unter einer längeren Trendlinie bewegt, kann dies als Verkaufssignal interpretiert werden. Die folgende Tabelle zeigt Zitate, Ma20, Ma50 und Ma200. T-SQL Ma20, Ma50, Ma200 kaufen und verkaufen Signale. Dieser Blog-Post ist Teil einer Serie über technische Analyse, TA, in SQL Server. Sehen Sie die anderen Beiträge hier. Geschrieben von Tomas LindI arbeite ich mit SQL Server 2008 R2 und versuche, einen gleitenden Durchschnitt zu berechnen. Für jeden Datensatz meiner Ansicht nach möchte ich die Werte der 250 vorherigen Aufzeichnungen sammeln und dann den Durchschnitt für diese Auswahl berechnen. Meine Ansichtspalten sind wie folgt: TransactionID ist eindeutig. Für jede TransactionID. Ich möchte den Durchschnitt für Spaltenwert berechnen, über vorherige 250 Datensätze. Also für TransactionID 300, sammle alle Werte aus vorherigen 250 Zeilen (Ansicht wird absteigend von TransactionID sortiert) und dann in Spalte MovAvg das Ergebnis des Mittelwertes dieser Werte schreiben. Ich bin auf der Suche nach Daten in einer Reihe von Datensätzen zu sammeln. Fragte am 28. Oktober 14 um 20: 58 Wir haben uns darüber im Klaren, wie wir rollende Durchschnitte in Postgres schreiben können. Durch die beliebte Nachfrage zeigten Sie, wie Sie das gleiche in MySQL und SQL Server zu tun. Nun, wie man kommentiert laute Charts wie folgt: Mit einer 7-Tage-Vor-durchschnittliche Zeile wie folgt: Die große Idee Unsere erste Grafik oben ist ziemlich laut und schwer zu nützlichen Informationen aus. Wir können es glätten, indem wir einen 7-tägigen Durchschnitt über die zugrunde liegenden Daten zeichnen. Dies geschieht mit Fensterfunktionen, Selbstverknüpfungen oder korrelierten Unterabfragen - gut decken die ersten beiden. Grasen Sie mit einem vorangegangenen Durchschnitt, was bedeutet, dass der durchschnittliche Punkt am 7. des Monats der Durchschnitt der ersten sieben Tage ist. Optisch verschiebt dies die Spikes in der Grafik nach rechts, da eine große Spitze in den folgenden sieben Tagen gemittelt wird. Zuerst eine Zwischenzählertabelle erstellen Wir wollen einen Durchschnitt über die gesamten Anmeldungen für jeden Tag berechnen. Angenommen, wir haben eine typische Benutzer-Tabelle mit einer Zeile pro neuen Benutzer und einem Zeitstempel erstellt, können wir unsere Aggregate unsere Signatur-Tabelle wie folgt erstellen: In Postgres und SQL Server können Sie dies als CTE verwenden. In MySQL kannst du es als temporäre Tabelle speichern. Postgres Rolling Average Glücklicherweise hat Postgres Fensterfunktionen, die die einfachste Möglichkeit sind, einen laufenden Durchschnitt zu berechnen. Diese Abfrage geht davon aus, dass die Termine keine Lücken aufweisen. Die Abfrage ist durchschnittlich in den letzten sieben Reihen, nicht die letzten sieben Termine. Wenn Ihre Daten Lücken haben, füllen Sie sie mit generateseries oder verbinden sich gegen eine Tabelle mit dichten Datumszeilen. MySQL Rolling Average MySQL fehlt Fensterfunktionen, aber wir können eine ähnliche Berechnung mit Selbstverknüpfungen machen. Für jede Zeile in unserem Zählertisch, kommen wir zu jeder Zeile, die in den letzten sieben Tagen war und nehmen Sie den Durchschnitt. Diese Abfrage behandelt automatisch Datumslücken, da wir Zeilen innerhalb eines Datumsbereichs anstatt der vorhergehenden N Zeilen betrachten. SQL Server Rolling Average SQL Server hat Fenster-Funktionen, so dass die Berechnung der rollenden Durchschnitt kann entweder in der Postgres-Stil oder MySQL-Stil durchgeführt werden. Für die Einfachheit, waren die Verwendung der MySQL-Version mit einem Selbst-Join. Das ist konzeptionell das gleiche wie bei MySQL. Die einzigen Übersetzungen sind die dateadd-Funktion und explizit benannte Gruppe nach Spalten. Andere Mittelwerte Wir konzentrierten uns auf den 7-tägigen nachlaufenden Durchschnitt in diesem Beitrag. Wenn wir den 7-tägigen Vorquartal betrachten wollten, war es so einfach wie das Sortieren der Daten in die andere Richtung. Wenn wir einen zentrierten Durchschnitt betrachten wollten, verwenden wir: postgres: Zeilen zwischen 3 vor und 3 nach MySql: zwischen signups. date - 3 und signups. date 3 in MySQL SQL Server: zwischen dateadd (Tag, -3, signups. Datum) und dateadd (Tag, 3, signups. date)

No comments:

Post a Comment