Wednesday 22 November 2017

Bewegungs Durchschnitt Standard Abweichung R


Diese Frage hat hier schon eine Antwort: Ich möchte jede Art von bewegter Statistik auf einer Zeitreihe in R berechnen, die über einen gleitenden Durchschnitt hinausgeht. Zum Beispiel, wie würde ich eine bewegte Standardabweichung über ein Zeitfenster der Länge 3 berechnen. Ive hat folgendes versucht: Aber nicht nur funktioniert es nicht (weil das Cumsum des verzögerten Vektors einen Vektor aller NAs gibt), aber ich habe aufgehört zu versuchen Um diese letzte Ausgabe zu lösen, weil es unnötig kompliziert erscheint. Jede elegante Lösung für dieses Problem gefragt am 17. Februar 13 um 22:59 als Duplikat von Arun markiert. Thelatemail Joran GSee Joshua Ulrich Feb 17 13 at 23:40 Diese Frage wurde vorher gefragt und hat bereits eine Antwort. Wenn diese Antworten nicht vollständig auf Ihre Frage eingehen, bitte fragen Sie eine neue Frage. Moving Averages in R Nach meinem besten Wissen hat R keine eingebaute Funktion, um gleitende Durchschnitte zu berechnen. Mit der Filterfunktion können wir jedoch eine kurze Funktion für bewegte Mittelwerte schreiben: Wir können dann die Funktion auf beliebige Daten verwenden: mav (data) oder mav (data, 11), wenn wir eine andere Anzahl von Datenpunkten angeben wollen Als der Standard 5 Plotten funktioniert wie erwartet: plot (mav (data)). Zusätzlich zu der Anzahl der Datenpunkte, über die zu durchschnittlich, können wir auch die Seiten Argument der Filterfunktionen ändern: sides2 verwendet beide Seiten, Seiten1 verwendet nur vergangene Werte. Teilen Sie diese: Post Navigation Kommentar Navigation Kommentar NavigationIn der Praxis der gleitenden Durchschnitt wird eine gute Schätzung der Mittelwert der Zeitreihen geben, wenn der Mittelwert konstant ist oder sich langsam ändert. Im Falle eines konstanten Mittels wird der größte Wert von m die besten Schätzungen des zugrunde liegenden Mittels geben. Eine längere Beobachtungsperiode wird die Effekte der Variabilität ausgleichen. Der Zweck der Bereitstellung eines kleineren m ist es, die Prognose auf eine Änderung des zugrunde liegenden Prozesses zu reagieren. Zur Veranschaulichung schlagen wir einen Datensatz vor, der Änderungen des zugrunde liegenden Mittels der Zeitreihen beinhaltet. Die Figur zeigt die Zeitreihen, die für die Illustration verwendet wurden, zusammen mit der mittleren Nachfrage, aus der die Serie erzeugt wurde. Der Mittelwert beginnt als Konstante bei 10. Beginnend um die Zeit 21 erhöht er sich in jeder Periode um eine Einheit, bis er zum Zeitpunkt 30 den Wert von 20 erreicht. Dann wird er wieder konstant. Die Daten werden durch Addition des Mittelwertes, eines zufälligen Rauschens aus einer Normalverteilung mit Nullmittelwert und Standardabweichung simuliert. 3. Die Ergebnisse der Simulation werden auf die nächste ganze Zahl gerundet. Die Tabelle zeigt die simulierten Beobachtungen für das Beispiel. Wenn wir den Tisch benutzen, müssen wir uns daran erinnern, dass zu irgendeiner Zeit nur die bisherigen Daten bekannt sind. Die Schätzungen des Modellparameters, für drei verschiedene Werte von m werden zusammen mit dem Mittelwert der Zeitreihen in der folgenden Abbildung dargestellt. Die Figur zeigt die gleitende durchschnittliche Schätzung des Mittelwertes zu jeder Zeit und nicht die Prognose. Die Prognosen würden die gleitenden Durchschnittskurven nach Perioden nach rechts verschieben. Aus der Figur ergibt sich sofort eine Schlussfolgerung. Für alle drei Schätzungen liegt der gleitende Durchschnitt hinter dem linearen Trend zurück, wobei die Verzögerung mit m zunimmt. Die Verzögerung ist der Abstand zwischen dem Modell und der Schätzung in der Zeitdimension. Wegen der Verzögerung unterschätzt der gleitende Durchschnitt die Beobachtungen, wenn der Mittelwert zunimmt. Die Vorspannung des Schätzers ist die Differenz zu einer bestimmten Zeit im Mittelwert des Modells und der durch den gleitenden Durchschnitt vorhergesagte Mittelwert. Die Vorspannung, wenn der Mittelwert zunimmt, ist negativ. Für ein abnehmendes Mittel ist die Vorspannung positiv. Die Verzögerung in der Zeit und die Vorspannung, die in der Schätzung eingeführt werden, sind Funktionen von m. Je größer der Wert von m. Je größer die Größe der Verzögerung und der Vorspannung ist. Für eine stetig wachsende Serie mit Trend a. Die Werte der Verzögerung und der Vorspannung des Schätzers des Mittels sind in den nachstehenden Gleichungen angegeben. Die Beispielkurven stimmen nicht mit diesen Gleichungen überein, weil das Beispielmodell nicht kontinuierlich zunimmt, sondern es beginnt als Konstante, ändert sich zu einem Trend und wird dann wieder konstant. Auch die Beispielkurven sind vom Lärm betroffen. Die gleitende durchschnittliche Prognose der Perioden in die Zukunft wird durch die Verschiebung der Kurven nach rechts dargestellt. Die Verzögerung und die Bias steigen proportional an. Die nachfolgenden Gleichungen zeigen die Verzögerung und die Vorspannung einer Prognoseperiode in die Zukunft im Vergleich zu den Modellparametern. Wiederum sind diese Formeln für eine Zeitreihe mit einem konstanten linearen Trend. Wir sollten uns über dieses Ergebnis nicht wundern. Der gleitende durchschnittliche Schätzer beruht auf der Annahme eines konstanten Mittels, und das Beispiel hat einen linearen Trend im Mittel während eines Teils des Untersuchungszeitraums. Da Echtzeit-Serien den Annahmen eines Modells nur selten gehorchen, sollten wir auf solche Ergebnisse vorbereitet sein. Wir können auch aus der Figur schließen, dass die Variabilität des Rauschens die größte Wirkung für kleinere m hat. Die Schätzung ist viel volatiler für den gleitenden Durchschnitt von 5 als der gleitende Durchschnitt von 20. Wir haben die widersprüchlichen Wünsche, m zu erhöhen, um den Effekt der Variabilität aufgrund des Rauschens zu reduzieren und m zu reduzieren, um die Prognose besser auf Veränderungen zu reagieren Im gemein Der Fehler ist die Differenz zwischen den tatsächlichen Daten und dem prognostizierten Wert. Ist die Zeitreihe wirklich ein konstanter Wert, so ist der erwartete Wert des Fehlers Null und die Varianz des Fehlers besteht aus einem Begriff, der eine Funktion und ein zweiter Term ist, der die Varianz des Rauschens ist. Der erste Term ist die Varianz des Mittelwertes, der mit einer Stichprobe von m Beobachtungen geschätzt wird, vorausgesetzt, die Daten stammen aus einer Population mit einem konstanten Mittelwert. Dieser Begriff wird minimiert, indem man m so groß wie möglich macht. Eine große m macht die Prognose nicht mehr auf eine Veränderung der zugrunde liegenden Zeitreihen. Um die Prognose auf Veränderungen zu reagieren, wollen wir m so klein wie möglich (1), aber das erhöht die Fehlerabweichung. Die praktische Vorhersage erfordert einen Zwischenwert. Vorhersage mit Excel Das Prognose-Add-In implementiert die gleitenden durchschnittlichen Formeln. Das folgende Beispiel zeigt die Analyse, die durch das Add-In für die Beispieldaten in Spalte B bereitgestellt wird. Die ersten 10 Beobachtungen sind indiziert -9 bis 0. Im Vergleich zur obigen Tabelle werden die Periodenindizes um -10 verschoben. Die ersten zehn Beobachtungen liefern die Startwerte für die Schätzung und werden verwendet, um den gleitenden Durchschnitt für die Periode 0 zu berechnen. Die MA (10) - Spalte (C) zeigt die berechneten Bewegungsdurchschnitte. Der gleitende Mittelwert m ist in Zelle C3. Die Fore (1) Spalte (D) zeigt eine Prognose für einen Zeitraum in die Zukunft. Das Prognoseintervall befindet sich in Zelle D3. Wenn das Prognoseintervall auf eine größere Zahl geändert wird, werden die Zahlen in der Spalte Fore nach unten verschoben. Die Err (1) Spalte (E) zeigt den Unterschied zwischen Beobachtung und Prognose. Zum Beispiel ist die Beobachtung zum Zeitpunkt 1 gleich 6. Der prognostizierte Wert aus dem gleitenden Durchschnitt zum Zeitpunkt 0 beträgt 11,1. Der Fehler ist dann -5.1. Die Standardabweichung und die mittlere mittlere Abweichung (MAD) werden in den Zellen E6 bzw. E7 berechnet.

No comments:

Post a Comment